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Thermal measurements on a convecting dilute 3He-superfluid 4He solution in 
the quasiperiodic regime show a transition from a mode-locked periodic state to 
chaotic time dependence via intermittency. The type of intermittency is dis- 
cussed in the context of standard models of the phenomenon. In a region just 
below the onset of intermittency, injection of external multiplicative noise with 
noise amplitude above a certain threshold level induces the chaotic state. This 
noise-induced transition can be understood to be due to perturbations of a 
system with a barely stable attractor; the noise causes the system to escape the 
weakly attracting periodic points. We present a numerical simulation of a 1D 
map with external noise which explains some aspects of the noise-induced 
behavior, and a 2D map which has certain features of the intermittency. 

KEY WORDS: Intermittency; noise-induced transition; thermal convection; 
quasiperiodicity. 

1. I N T R O D U C T I O N  

The application of external noise to a system which is close to a bifurcation 
from a stable state to a chaotic at tractor can have dramatic effects. We 
experimentally study the transition, in a thermally convecting fluid, from a 
mode-locked periodic state to an intermittently chaotic state and the effects 
of multiplicative (parametric) noise on this transition. Intermittency, 
defined as the presence of regular or "laminar" intervals interrupted by 
chaotic bursts, is a common route to chaos in low-dimensional systems. It  
can occur in both the period-doubling and circle maps after the initial 
chaotic transition.(1'2) Intermittency has been found experimentally in elec- 
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tronic circuits (3) and in other convection work, including that of Berg6, 
Dubois, and co-workers (4) using silicone oil. Theoretical work by Eckmann 
et  al. ~5~ on one type of intermittency indicates that noise can induce such a 
transition prematurely. Previously, we briefly reported results for a noise- 
induced transition to intermittency in convecting 3He-superfluid 4He 
mixtures. (6) In this paper we expand that description in the light of 
additional data and present further analysis of the transition from a mode- 
locked periodic state to one of intermittent chaos, presumably involving 
global bifurcations resulting from the overlap of resonance horns. 

We have found that the application of noise to our convection cell 
leads to simple but surprising results. Our convective system can be driven 
into a chaotic regime by the application of external Gaussian broadband 
noise, the transition occurring at a well-defined nonzero noise level. 
According to theoretical models, the noise induces random-walk fluc- 
tuations which, after some period of time, may be sufficiently large to drive 
the system into an unstable regime. This effect is balanced by dissipation of 
the noise-induced fluctuations owing to the attractive (albeit weakly) 
nature of the stable state. The slow response of the system near the inter- 
mittent onset provides for long averaging times and the experimentally 
observed sharp noise threshold. Before presenting details of the experiment 
and results with applied external noise we will give a general description of 
the quasiperiodic regime in which this transition takes place. This region 
has been explored extensively by us in a number of experiments (7'8) and a 
description of features of this region is helpful in understanding the noise- 
induced phenomena. 

Thermal convection in dilute solutions of 3He in superfluid 4He very 
closely approximates classical Rayleigh-B6nard convection in a classical 
single-component fluid. (9'1~ For the purposes of convection the dilute 
solutions have an effectively negative thermal expansion coefficient and a 
low and variable Prandtl number (defined as the ratio of kinematic 
viscosity to thermal diffusivity, v/~:) in the range 0.044).2. The negative 
expansion coefficient implies that one must heat the fluid from the top to 
induce convection. This behavior is a result of superfluid counterflow which 
pushes 3He atoms away from the hotter boundary. The 3He is lighter than 
the surrounding 4He and when pushed down by counterflow produces a 
gravitationally unstable density gradient. At some critical temperature 
difference the fluid begins to convect. This transition is best described in 
terms of a dimensionless parameter, the Rayleigh number, defined as 
R = gc~d 3 AT/v~c, where g is the acceleration due to gravity, ~ is the effective 
themal expansion coefficient, d is the depth of the fluid layer, A T is the tem- 
perature difference across the layer, v is the kinematic viscosity, and ~c is the 
thermal diffusivity. For a laterally infinite fluid layer, convection begins at 
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Rc= 1708, whereas for finite geometries, particularly those with small 
aspect ratio, convection typically begins at a somewhat higher value. 

The parameter space of single-component convection is defined, within 
the Boussinesq approximation, in terms of the Rayleigh number R, the 
Prantdl number Pr, and the celt geometry, which is fixed and rectangular 
in this experiment with height d = 0.8 cm, length 2.0d, and width 1.4d. The 
Rayleigh number is controlled by varying the temperature difference across 
the layer and the Prandtl number is roughly proportional to the mean cell 
temperature, which can vary between 0.6 and 1.5 K. 

The bifurcations which occur in the parameter space formed by Pr  and 
R are shown in Fig. 1. For R < R c the fluid conducts heat diffusively, while 
above R~ there is a stationary velocity field which convects heat across the 
layer, thereby enhancing heat transport. ~~ The next instability is a forward 
Hopf bifurcation to oscillatory convection. (m The value of R at which this 
transition occurs is highly Prandtl number dependent, as opposed to R~, 
which is independent of Pr  to within experimental uncertaintyJ ~~ Another 
Hopf bifurcation occurs at higher Rayleigh number, leading to a regime 
characterized by two incommensurate frequencies; the spectral content of a 
time series from the system in this region can typically only be described by 
two frequencies not related by the ratio of integers. Within the two- 
frequency region there is significant interaction between the hydrodynamic 
modes responsible for the two frequencies. This interaction results in mode 
locking and an ordering of mode-locked intervals in a devil's staircase; see 
Fig. 2. A parameter that characterizes this mode locking is the winding 
number W, which is defined here as the ratio of the fundamental frequen- 
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Fig. 1. Phase diagram of the convection system in Rayleigh number--Prandtl  number space. 
Different states include thermally diffusive conduction, time-independent convection, periodic 
oscillations, two-frequency quasiperiodicity, three-frequency quasiperiodicity, and chaos. 
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Fig. 2. Winding number W versus normalized Rayleigh number with a bottom-plate tem- 
perature of 0.8500 K. The "steps" indicate mode locking. The upper central portion of the 
figure is a blowup of the main curve to illustrate finer detail. All lockings are labeled with thier 
winding number values. 

cies of the two modes; when the modes are locked this number takes on a 
rational value, i.e., the ratio of two integers. 

In the parameter space of Rayleigh and Prandtl number the locked 
regions form resonance horns which become wider as the Prandtl number 
is reduced. Figure 3 shows the major horn with winding number 2/13 and 
also shows the structure within the horn arising from the breakdown of the 
torus. One of the main features which is observed in the middle of the 
resonance horn is a transition from period-2 points to small secondary tori, 
indicating a Hopf bifurcation of the period-2 attractor. As Pr is reduced, 
these secondary tori become unstable and undergo lockings, period 
doublings, and chaotic intermittent cycling between the small tori. Details 
of this structure have been reported elsewhere. ~8'12) As Rayleigh number is 
increased (or Pr reduced), resonance horns persist but become increasingly 
surrounded by chaotic intervals. Eventually there are no longer any locked 
regions and the system is chaotic everywhere. For the data we report here 
there is a locked interval with winding number 2/11 surrounded by chaotic 
intervals above and below in Rayleigh number. As in ref. 8 and 12, we 
observe internal structure within the horn, namely that as Rayleigh number 
is increased across the horn the stable period-2 cycle of the 2/11 locking 
goes to a period-6 secondary Hopf structure (in other words, each point of 
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Fig. 3. Inverse Prandtl number 1/Pr versus normalized Rayleigh number R/Rc showing a 
large resonance horn with W =  2/13. Regions of hysteresis, secondary Hopf bifurcation (SHB), 
period doublings (P-4 and P-8) and accumulation (PDA), and intermittency are indicated. 
Other resonance horns, some of which overlap the 2/13 horn, are also labeled. 
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the stable 2-cycle gives rise to three small circles in the Poincar6 sections). 
There is then a region of intermittent chaos in the middle of the locking 
and finally the period-2 cycle reappears at the upper edge of the horn. 
Figure 4 shows the winding number for this region and illustrates the chaos 
in the middle of the horn in the scatter of the winding number over that 
interval. (Although the winding number is in some sense not well defined in 
the chaotic interval, as evidenced by the scatter in Fig. 4, operationally one 
defines W as the ratio of the peak frequencies of the fundamentals, which 
are only distorted, not completely destroyed, by deterministic broadband 
noise arising from a chaotic state.) Before discussing the dynamics of this 
region in detail we will present the experimental procedure, the results of 
applying external noise, and a numerical simulation which helps explain 
some of the behavior we observe in the experiment. 

2. E X P E R I M E N T A L  R E S U L T S  A N D  A N A L Y S I S  

In operation, a constant heat flow Q is introduced to the top plate of 
the cell and the bottom plate is controlled at a fixed temperature of 0.850 K 
corresponding to a Prandtl number of 0.068. The temperature difference 
across the cell is AT, and the convective onset is at A Tc = 4.28 mK. We 
define the stress parameter as ~= ( A T ) / A T  c -  1 = ( R ) / R c - 1 ,  with the 
angle brackets denoting a time average. In addition to measurements of the 
top-bottom temperature difference, we also had a probe which measured 
local temperature differences near the center of the top plate. This probe 
consisted of a small, thermally-insulated plug inserted in the top plate. The 
temperature difference between this plug and the rest of the top plate was 
measured with a gold-iron thermocouple whose current was sensed by a 
SQUID ammeter. (1~ All time-dependent data reported in this paper were 
obtained from this local probe. 

For part of this work we coupled an external noise source to the 
experiment. The primary sources of noise intrinsic to the apparatus were 
Johnson noise in the thermocouple and fluctuations in the bottom-plate 
temperature produced by variations in the cooling power of our 3He 
evaporation refrigerator. Only the latter can affect the dynamics of the 
system. We chose to add broadband noise to the voltage applied to the 
bottom-plate heater, giving us a noise source with a character similar to 
the intrinsic experimental noise. The instantaneous output of our noise 
generator had a Gaussian distribution about zero voltage and a high- 
frequency cutoff of 50 Hz. The actual spectrum of the thermal fluctations of 
the bottom plate depended on the settings used for the bottom-plate tem- 
perature controller and on thermal time constants in the experiment. 
Measurements made on a simply periodic convective state showed that the 
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application of external noise in the manner described above simply 
increased the broadband noise floor and did not otherwise modify charac- 
teristics of the power spectrum; quantities such as the peak amplitude and 
frequency of the fundamental were unchanged, indicating that the 
application of external noise did not cause an effective shift in the Rayleigh 
number of the system. While in this state, we determined the relation 
between noise in the heater voltage and fluctuations in d T. Owing to feed- 
back control of the bottom-plate temperature, the average value of A T was 
unaffected by the heater-voltage noise. 

We define the noise amplitude o- as the normalized rms fluctuations 
in AT: 

{ ( A T -  { d r } ) 2 )  ~/~ 
cr (1) 

(dr )  

This quantity includes both intrinsic and externally applied noise. The 
relation of ~r to rms-applied-noise voltage determined in this state was 
assumed to apply during measurements of the chaotic state. 

In detecting the transition from a stable periodic state to a chaotic 
state it is useful to have a simple method of quantifying the degree of 
"chaos" in a time series. Although methods such as fractal dimension, 
metric entropy, or Lyapunov exponent algorithms give a direct and 
theoretically useful measure of the degree of chaos, (13) they are somewhat 
cumbersome to implement. We have found a simple measure of the 
normalized broadband spectral power to be useful. This "noise-to-signal 
ratio" N/S is defined as 

N 1 ~ P ( f )  df, I f ; i !  -S =f2 - f ~  loglo _P = P(f) df (2) 
lP f 2 -  fl 

where P(f) is the power-spectral density of the probe temperature fluc- 
tuations a n d f i s  frequency. This quantity thus varies depending on the part 
of the spectrum averaged. Besides its extreme simplicitly, it is highly sen- 
sitive to changes in the spectrum even near the noise floor and is relatively 
insensitive to spectral resolution since sharp peaks contribute nothing in 
the limit of infinite resolution. 

As discussed above, at the onset of convection (~ = 0) the fluid begins 
to move time independently. For Pr = 0.068, the first oscillatory instability 
occurs at e -4 .14 ,  with an amplitude that grows from zero as e is further 
increased. (m'm The second oscillation, also starting with zero amplitude, 
begins at e = 9.12. Somewhat above ~ = 9.12, nonlinear interactions between 
the two oscillations produce a number of regions of frequency locking 
and of chaos. In this region we focus on a resonance horn with winding 
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Fig. 5. The observed noise level, as characterized by N/S, plotted as a function of the stress 
parameter e. The interval with small N/S values corresponds to the period-2 locked state. 

number  2/11. This resonance horn is defined in Fig. 4 as the region 
12.58 < e < 12.86, although the frequencies are not locked in the middle of 
the horn where chaotic states exist. In the interval 12.575 < e < 12.648 the 
two frequencies are locked in a 2/11 ratio; the lower frequency f2 is about 
0.13 Hz. Figure 5 shows the behavior of N/S over a somewhat larger range 
of stress parameter. Intermittent bursts, as illustrated in Fig. 6, are seen at 

Fig. 6. A time series of temperature oscillations of the probe thermocouple just above the 
intermittent onset, with no external noise applied. The arrows indicate the region of slow 
buildup of the f2/6 amplitude. 
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the upper end of the locked region, giving broadband noise increases of 
,,~40 dB in power spectra. We will focus on this upper region in Fig. 5, 
which is in the middle of the 2/11 resonance horn. The burst rate increases 
as one moves away from the locked state until it is no longer possible to 
indentify any portion of the time series as displaying the simple behavior 
characteristic of the locked state. Both bursts and quiescent intervals are 
visible in Fig. 6. 

One method of characterizing intermittent behavior is by the 
probability distribution of the lengths of quiet intervals, as in Fig. 7. This 
figure shows a histogram of the number of quiet intervals versus their 
length/. The length of a burst is defined in terms of a feature of the inter- 
mittent bursts which suggests something about the dynamics of the inter- 
mittency as discussed below. The bursts occur after a slow buildup of the 
f2/6 amplitude, as may be discerned from Fig. 6. To see this, look at the 
maxima of the time series in Fig. 6. There are large-amplitude and 
somewhat smaller-amplitude excursions. Considering just the large- 
amplitude maxima, there is a period-3 growth of these peaks in a sequence 
small-large-large, the peak height difference increasing as the burst is 
approached. Taking into account both large and small maxima, the period 
is 6, corresponding to a frequency off2/6. Here f2 is the lower of the two 
frequencies, and we define l to be the number off2/6 oscillations between 
bursts. These data were taken at 6 = +0.005, above the spontaneous onset 
and without external noise. 

Near but below the upper end of the locked region we observed that 
intermittent behavior could be induced by applying noise to the system. 
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Fig. 7. A histogram of the number  of burst-free intervals versus the length of those intervals; 
f = +0.005, above the spontaneous  onset and with no external noise applied; I is the number  
of f2 /6  oscillations seen between bursts. 
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Figure 8 shows N/S versus a for various values of 6, where 6 = Q/Qo - 1 
~/eo-1;  the subscript indicates the value at onset, defined as that point 
where bursts occur with zero applied noise. The rise in N/S is caused by the 
presence of one or more bursts in a run (lasting about 1 hr). We see that a 
rather sharp threshold ac exists, above which bursts are induced and below 
which external noise simply adds to the intrinsic noise. At the highest noise 
levels, N/S appears to saturate at a smaller value. The dependence of ac on 
6 is shown in Fig. 9 and appears linear over the plotted range of 6. 

The intermittent bursts seen in the time series and the accompanying 
rise in broadband noise are in qualitative agreement with Pomeau and 
Manneville's intermittency scenario. ~) Figure7 shows a monotonic 
decrease of the probability of a quiet interval as its length increases, 
consistent with their type II or III intermittency; the exact form of the 
probability distribution may depend on the reinjection mechanism. ~14~ In 
contrast, type I intermittency produces bimodal histograms. ~2) The effects 
of noise on type I intermittency have been studied numerically. ~5~ In par- 
ticular, the rapid increases in N/S we observe in Fig. 8 are consistent with 
the calculations of Eckmann et al. (Fig. 7a of ref. 5), which indicate a very 
rapid variation in burst rate with small changes in applied noise. In the 
next section we discuss how this "noise threshold" effect carries over to 
maps characteristic of the other types of intermittency and how one can use 
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this effect to predict power-law relations between ac and 6. We then 
compare the predicted power-law behavior with the experimental results 
shown in Fig. 9. 

3. N U M E R I C A L  M O D E L S  OF I N T E R M I T T E N C Y  

In this section we show numerical results illustrating the effects of 
noise on the mean laminar interval or time between bursts, /. We also 
present a heuristic argument for the scaling of f with the noise level and 
with the distance from the unperturbed bifurcation point. These results are 
partially contained in more rigorous and thorough treatments, (2'5) 
although the scaling and numerics for a cubic tangency are presented here 
explicitly for the first time. We follow ref. 2 and consider a map, 

= ax,~ + 3 + ar (3) Xn + 1 Xn  _1_ 2 

which is an expansion of the logistic map around a tangency point. This 
quadratic map applies for type I intermittency and has a stable and an 
unstable fixed point for 6 < 0, a tangent point when 5 = 0, and a fixed point 
at x = ~ for 6 > 0. The map is assumed to have a reinjection mechanism 
away from the tangency modeled in Eq. (3) such as occurs in the logistic 
map but that is not important for determining the scaling of ~ We use an 
additive noise term a~n which is a random variable having a Gaussian dis- 
tribution and a variance ( 4 2 ) =  1. (In the experiment the noise is mul- 
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tiplicative or parametric, but in 1D logistic map models this difference only 
comes in as higher-order correlations of the noise statistics and does not 
affect small-noise results. ~15~) The variable 6 measures the width of the near 
tangency and is a measure of how close the map is to the tangent bifur- 
cation. To find [ numerically, we iterate the map model of Eq. (3), and 
measure the length of time it takes the system to traverse a region near the 
tangency. 

In order to see a clear relationship between the numerical results and 
the experimental data, it is useful to present the data in a scaled form so 
that all values of a, 6, and a fall on the same curve. The proper scaling for 
a quadratic map was determined in ref. 5 and is reproduced here in a 
heuristic fashion; extension of our analysis follows easily for the cubic map 
case. If we make the assignments c =  ([~[/a), m 2 =  2ac, and z = ( x + c ) / 2 c  
and substitute into Eq. (3), we find 

zn+l = (1 - 2 )  z, +2z~ + a a ~ , / 2 ,  6 < 0  
(4) 

Z , + l = ( 1 - - 2 )  z , + 2 z ~ + a c r ~ , / 2 + 2 a 6 / 2 ,  6 > 0  

We then follow ref. 2 and use the approximation z ,  + 1 - z ,  ~ dz/dt.  Next we 
rescale the time t ~ t' -- 2t. The noise amplitude is simultaneously scaled as 
~r ~ o- ~ to account for the increased variance of the noise. This gives the 
equations 

dz/dt '  = - (z - z 2) + a~r~/2 3/z, 6 < 0 
(5) 

dz/dt '  = - (z - z 2) + aa~/2  3/2 + 1/2, 6 > 0 

These Langevin equations can be solved by writing the corresponding 
Fokker-Planck equations for the time evolution of the probability 
distribution. (5) From a simpler perspective, however, one can see in 
Eqs. (5) that the result must be some function of a~r/2 3/2, assuming that the 
endpoint conditions are sufficiently large that the scaling of x to z does not 
enter. Taking into account the time rescaling, the average bust time [ 
follows as 

[ =  (1/2) h(aa/2  3/2) (6) 

where h is some unknown function. This analysis should apply in the case 
2 ~ 1, acr/2 ~ 1, and [>> 1. The first two conditions make the transition from 
iteration to differential equation plausible, and the last condition is 
required to ensure that the endpoints are far apart. 

Although the derivation above is not rigorous, one test of its 
usefulness is in its success in scaling numerical data. In Fig. 10a we plot 2[ 
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versus  aG/.~ 3/2 for  various values of  a, 6, a n d  a Erecall 2 = 2 ( a & ) m ] .  The 
value of { was determined by calculating the mean number of iterations 
needed to go from the initial point x = - 1 / 2  to a value x > 1/2. The results 
of Fig. 10a show that the scaling behavior is as expected. In the absence of 
noise for c~ > 0 the length of a laminar period goes as & 1/2 (i.e.,/2 = const. 
in Fig. 10a). At small 6 and large noise ~, the values for above and below 
the onset coincide, as they should. The slope for that region, in the lower 
right corner of the plot, is - 2/3, as it must be to avoid singular behavior at 
6 = 0. The portion of the plot extending vertically is the most  relevant to 
our experimental results. This shows that the mean length of a laminar 
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Fig. 10. (a) A log-log plot of f, the time between intermittent bursts from the quadratic map 
of Eq. (3), versus noise amplitude a, using the rescaled parameters a6)t -3/2 for noise and 2f fo r  
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bursts for the cubic map, Eq. (7), versus noise amplitude 6, using rescaled variables cral/2/161 
for the noise and 161/-for the burst rate. ( + )  6 > 0 ,  ( x )  6 < 0 .  
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interval changes very rapidly as a function of aa/2 3/2. Therefore the critical 
noise threshold is approximately given by the condition aa/2 3/2 =const.  
which implies a ~ 2 3/2~ 6 3/4. Qualitatively, this would explain the apparent 
sharp turn-on in observed noise as the applied noise is increased, as seen in 
Fig. 8. 

Very similar behavior is found when the case of a cubic rather than a 
quadratic tangency is considered: 

x ,+ l  = ( l + 6 ) x n + a x  n3+a~. (7) 

This map is the type suggested for the case of intermittency of type II 
or III. Rescaling Eq.(7)  as described above gives the relation 
[=(1/6)h(a(a/6)l/2), where, as above, h is some unknown function. The 
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rc = 1 + xfl8 (this figure follows Fig. 4 of ref. 2). (b) An expanded view of the central tangency 
of Fig. l la ,  with several iterations plotted (this figure follows Fig. 5 of ref. 2). 
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numerical results for the cubic case are shown in Fig. 10b. The vertical por- 
tion of the data in Fig. 10b suggests the approximate relation acoc6 for the 
cubic map, as opposed to the acoc6 3/4 for the quadratic map. Our data, 
shown in Fig. 9, seem to be in better agreement with the scaling for a cubic 
map. 

To understand these models for intermittent behavior, one has to con- 
sider the "reinjection" process. The iterative maps of Eqs. (3) and (7) are 
no necessarily chaotic. For  example, one can have a tangent bifurcation in 
a circle map. The time to traverse the region of tangency should be similar 
to that found for Eq. (3), but there is no chaotic behavior. The chaos in 
intermittency models is produced by chaotic behavior occurring not near 
the tangency, but in other portions of the map. A chaotic one-dimensional 
map must be noninvertible and thus have multiple values of xn producing 
the same value of x ,  + 1. This allows points in distant portions of the map 
to be "injected" near the tangency. An example is shown in Fig. 11, for the 
third iterate of the logistic map x n +1= rxn(1- x,). Also illustrated here is 
the manner in which the iteration of the map causes slowing down close to 
a near-tangency. The injection into the region of tangency has been 
modeled ~2) by assuming a flat distribution of starting points within some 
range of x values straddling the tangency. This gives rise to a bimodal 
probability distribution for the lengths of the laminar intervals; the traver- 
sal times are short or long for injection to the left or right of the tangency. 
This bimodality is not in agreement with the experimental histogram 
plotted in Fig. 7, whereas the unimodal distribution expected for a cubic 
map does agree qualitatively with our data. 

4. D Y N A M I C S  OF THE O B S E R V E D  I N T E R M I T T E N C Y  

It is important to demonstrate not only that scenarios like intermit- 
tency, period doubling, and mode locking occur, but that the models used 
are appropriate to the data. We have attempted to produce a return map 
from our data. This is the best method of determining the applicability of 
various numerical models. We have been unable to construct directly such 
a one-dimensional map, but examination of the Poincar6 sections suggests 
something about the origin of the intermittency. 

One obtains Poincar6 sections consisting of two dots for Rayleigh 
numbers inside the 2/11 mode-locked interval in Fig. 4 and a portion of 
which is shown in Fig. 5 as the large region of low N/S. As R is increased 
past the upper edge of this region, each dot becomes three small circles, 
indicating a secondary Hopf  bifurcation of the locked state in addition to 
some mechanism which takes a single point into three points. (We refer to 
these three circles as a period-3 cycle with respect to a single point ,  but 
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another way to describe them is as a period-6 cycle arising from the 
period-2 locked state.) A similar transition in the interior of the 2/13 horn 
is illustrated in Fig. 3 and discussed in detail in refs. 8 and 12. A precursor 
to this threefold splitting is found in very low-level f2/6 subharmonics that 
exist in power spectra just below this transition. We do not understand the 
details of this transition nor its importance in understanding the transition 
to intermittency. The next state which we observe as Rayleigh number is 
increased is an intermittent state which is related to the period-3 secondary 
tori; the nonlaminar excursions occur in the vicinity of the previous 
positions of the period-3 tori. This is presumably due to a collision of the 
stable manifold of the small tori with the unstable manifold of the saddles 
which form the virtual separatrices of the period-3 tori. To understand this 
intermittency, we display in Fig. 12 a Poincar6 section made just above the 
onset of intermittency, slightly beyond where we found the three circles: 
Here, those points have started to mix together. The intermittent chaos we 
observe is due to the irregular, aperiodic movement between circles. The 
points in Fig. 12a are labelled 1, 2, 3, 1, 2, ..., in order of their occurrence. A 
similar plot for the three circles would show the iteration proceeding in a 
regular way so that each circle would be composed of only l's, 2's, or 3's. 
The solid lines in the figure show how the points iterate, connecting 
successive third iterate points, and should not be confused with trajectory 
lines. Along each sequence of these third iterate points is a region of high 
point density. In the high-density regions, the system is acting like a 
periodic state, since the section is temporarily pointlike. We have verified 
that the laminar regions of a time series (such as in Fig. 6) occur when the 
system is in one of these regions of high density on the section. A more 
schematic view of the dynamics on the section is provided in Fig. 12b. 

It is possible to gain some insight into the origins of the intermittency 
from analyzing a 2D map which displays similar behavior: 

0~+1= O~+f2--}--~sin(2rcO~)+Kr~ m o d l  

(8) 

This map is noninvertible and is consequently not a proper model of a flow 
in a 3D phase space. We do not know, however, of any fundamental reason 
why similar behavior could not occur in an invertible 2D map, although in 
practice secondary tori do seem easier to observe numerically in noninver- 
tible maps. To make sure we are not looking at effects due to a phase space 
dimension greater than three, we have performed fractal dimension analysis 
of chaotic states just outside the resonance horn. On the lower edge the 
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(a) 

2 

(b) 

Fig. 12. (a) A Poincar6 section just above the onset of intermittency. The points are 
cyclically labeled 1, 2, 3, 1, 2, 3,... in order of occurrence. Note particularly the regions of high 
point density in the lower right corner. The lines are guides to the eye, intended to show the 
iteration sequence of the third-iterate points (l's, 2's, and 3's). The solid lines also should 
roughly indicate the appearance of the section if infinitely many point were plotted; a dashed 
line was used in regions of sparse data. (b) A schematic view representing the three iterations 
and the motion between them. In some data we see a circle traversed several times before the 
system moves on. 

a t t r ac to r  has d imens ion  2.5 _+ 0.1 using the cor re la t ion  d imens ion  a lgor i thm 
of Gra s sbe rge r  and  Proccacia .  (16) This  suggests tha t  nea rby  a t t r ac to r s  can 
be descr ibed as flows in 3D phase  space and  thus by inver t ib le  2D maps.  

Us ing  c o m p u t e r  code deve loped  by Kevrek id i s  and  co-workers ,  (t2'17) 
we show two a t t r ac to r s  with their  fixed po in ts  in Fig. 13. O u r  ma in  desire 
is to unde r s t and  the origin of the in termi t tency,  and  we will pass over  o ther  
theore t ica l ly  in teres t ing p roper t i e s  of  these a t t rac tors .  F igure  13a shows an 
a t t r ac to r  c o m p o s e d  of jus t  three circles. The  squares  m a r k  the pos i t ions  of  
spiral  repellers,  and  the t r iangles  m a r k  the pos i t ions  of fixed poin ts  which 
have bo th  an a t t r ac t ing  d i rec t ion  and  a repell ing d i rec t ion  (i.e., saddles).  
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Figure  13b co r re sponds  to a slightly larger  nonl inear i ty ,  for which the 
circles have merged  into a chaot ic  a t t rac tor .  An expanded  view would  show 
tha t  the circles are  no t  smoo th  bu t  ins tead  are composed  of m a n y  t ight  
folds. 

This pa i r  of p ic tures  is in tended  to help make  an ana logy  between the 
un lock ing  t rans i t ion  f rom per iod ic  to quas iper iod ic  behav io r  and  the more  
complex  t rans i t ion  from quas iper iod ic  to chaot ic  behav io r  that  m a y  
descr ibe  the exper imenta l ly  observed  intermit tency.  In  s imple models  of 
mode  locking,  the un lock ing  t rans i t ion  is very s imilar  to in termi t tency,  in 
tha t  there is a t angent  b i furca t ion  s imilar  to that  shown in Fig. 1 lb.  In  bo th  
cases there  is a " l aminar , "  nea r ly -per iod ic  po r t i on  of  the t ime series, a l ter-  

(a) 

(b) 

Fig. 13. Two attractors for the map of Eq. (8). The rectangles are repelling fixed points with 
complex eigenvalues, and the triangles are saddle nodes. (a)A quasiperiodic state with 
threefold symmetry. Parameter values are t2 = 0.25, K= 0.15, R = 4.0, ~ = 0.42, and c~ = 0.070. 
(b) The parameter values are the same as in (a) except e = 0.073. This is a chaotic attractor. 
On a fine scale the circles are no longer smooth, but consist of many large undulations very 
tightly compressed in a direction perpendicular to the attractor. 
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nating with more complicated behavior; chaotic behavior in the case of 
intermittency, and quasiperiodic behavior in the mode-locking case. The 
presence of chaotic behavior and fractal attractors makes the former case 
by far the more complicated. But in both instances, the saddles (triangles) 
collide with the stable attractor to mix together. When the points on the 
section pass close to a saddle, slow transients and nearly-periodic behavior 
occur. This analogy, and the data in Fig. 12, suggest a qualitative resem- 
blance to a one-dimensional map [Eq. (3) or (7)], but the reinjection 
process may be different, and a one-dimensional map perhaps oversim- 
plifies the two-dimensional character of the section. The numeric results 
indicate that the saddles, and thus the regions of high point density, should 
lie on the edge of the circles, while this is not apparent in the data. 

5. C O N C L U S I O N S  

There are two elements in this transition to intermittent behavior 
which are important to consider. First, there is the nature of the intermit- 
tency itself and how it compares to standard models of such phenomena. 
There are many qualitative similarities between the experimental data and 
the type II and type III intermittency models of Pomeau and Manneville. (1~ 
The transition presented here, however, occurs on a mode-locked torus as 
opposed to on a periodic limit cycle and therefore a simple 1D map 
analysis may not be relevant. The actual experimental dynamics is complex 
and probably involves global bifurcations and interactions of stable and 
unstable manifolds. We presented experimental Poincar6 sections and 
numerical simulations of a 2D map which gave a flavor for this com- 
plicated dynamics and its probable source. 

The second interesting feature of the data is the ability of externally 
applied noise to induce the transition to the chaotic state. Again some 
characteristics of the experiment are qualitatively explained by the 
numerical models of noise-induced intermittency discussed in this paper. 
Assuming that our picture of the dynamics of the intermittent state in the 
absence of external noise is fundamentally correct, then an understanding 
of the noise-induced transition is also possible. Close to the transition the 
period-3 secondary tori are only weakly stable and the stable and unstable 
manifolds which form the separatrices between the period-3 tori are close 
to overlapping, causing global bifurcation structures. (18) When noise is 
applied it causes the system to be perturbed out of one of the weakly 
attracting tori and to hop to another of the period-3 tori. Of course each of 
the period-3 tori is connected by the flow and what one is actually doing is 
introducing a random phase disturbance of the period-3 iteration. As the 
tori become more or less attracting, it becomes more or less difficult for the 
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system to escape from the basin of attraction of the stable period-3 
corresponding, in the experiment, to an increase in the critical noise 
threshold as 161 increases (recall that 6 is the distance from the unperturbed 
transition point). 

In conclusion, we have constructed a description of a state of intermit- 
tent chaos in a convecting fluid. We have also discussed how this intermit- 
tent state can be excited by the application of external noise. Our descrip- 
tion includes both global features of the attractor and possible universal 
aspects of intermittency derived from 1D map models. Further experimen- 
tal work on the global features of the 2/11 resonance horn would help 
considerably in understanding this transition. 
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